
Hardware-Software Co-designed Near-Cache
Accelerator for Graph Pattern Mining

Julian Pavon, Ivan Vargas Valdivieso, Osman Ünsal and Adrian Cristal
Department of Computing Science
Barcelona Supercomputing Center

Barcelona, Spain
Email: {julian.pavon, ivan.vargas, osman.unsal, adrian.cristal}@bsc.es

Abstract—Graph Pattern Mining (GPM) algorithms extract
meaningful information within graph structures, making them
fundamental building blocks for multiple application domains.
However, their performance in multicore CPUs is bottlenecked
by cache pollution and hard-to-predict divergence control caused
by index matching operations that dominate the execution time.

To address these challenges, this paper introduces Aventado, a
hardware-software co-designed Near-Cache Accelerator for GPM
workloads on commercial multi-core CPUs. By executing index
matching operations near the Last-Level Cache (LLC), Aventado
reduces data movement and cache pollution in upper cache levels
while minimizing divergence control and enhancing parallelism.
To this end, Aventado integrates a parallel control logic that
simultaneously executes multiple index matching operations,
maximizing utilization of the LLC bandwidth and enhancing
overall execution efficiency. Furthermore, Aventado includes
virtual memory support, ensuring compatibility with commodity
operating systems. Designed as a decoupled programmable accel-
erator, it operates via memory-mapped registers. Our evaluation
demonstrates that Aventado outperforms software and hardware
approaches by 26.7× and 1.7× respectively, while incurring a
negligible area overhead of 0.3% over the CPU baseline.

I. INTRODUCTION

Graph Pattern Mining (GPM) algorithms identify specific pat-
terns within an input graphs, but their high computational cost
often leads to long execution times [1], [2]. These algorithms
follow three main steps: graph traversal using vertex and
Breadth-First Search BFS orders, symmetry breaking, and set
operations to identify matching subgraphs [1]–[3].

While BFS order exposes data locality [4] by reusing
the data from a vertex to visit its neighbors, set operations
introduce significant performance challenges. These operations
depend on index matching, (i) resulting in cache pollution, as
a large portion of the loaded elements are discarded, leading
to inefficient memory utilization [3]. (ii) They incur hard-
to-predict divergence control (e.g., frequent if-else branches),
which reduces the effectiveness of branch predictors.

Prior work has explored various approaches to improve
the performance of commercial CPUs for GPM algorithms,
including software-based pruning techniques [2], [5], [6], as
well as Near-Data Processing (NDP) architectures [3], [6].
Software-based approaches improve performance by elimi-
nating redundant computations [2], [5] and reducing the index
matching search space [6]. However, they do not address
the inherent cache pollution and divergence control caused

by index matching operations. As a result, their execution
time remains dominated by inefficient cache utilization and
frequent branch mispredictions. On the other hand, NDP so-
lutions execute index matching directly in main memory (e.g.,
DRAM) [3], [6], reducing data movement and cache pollution.
However, NDP has key limitations: (i) it struggles to exploit
the locality in GPM algorithms, as interleaved data distribution
across memory channels in commercial CPUs forces cross-
channel communication, increasing NoC traffic and reducing
parallelism [7], and (ii) it relies on physically contiguous
data, which has limited scalability due to fragmentation and
the scarcity of large contiguous memory blocks in real HPC
systems and data center systems [8].

To address the aforementioned limitations, this work ex-
plores Near-Cache Processing (NCP) as a means to improve
GPM performance on commercial multi-core CPUs, motivated
by two key insights. (i) GPM algorithms inherently exhibit
data locality, but cache pollution diminishes its benefits. Pro-
cessing data directly in lower cache levels, such as the Last-
Level Cache (LLC), helps mitigate cache pollution in upper
levels (e.g., L1), preserving data locality benefits while avoid-
ing cross-channel communication overheads seen in NDP. (ii)
NCP can be integrated with existing virtual memory support,
removing the need of physically contiguous memory.

To this end, we introduce Aventado, a hardware-software
co-designed near-LLC accelerator carefully designed to accel-
erate index matching operations. Aventado works as a decou-
pled programmable unit, receiving instructions via memory-
mapped registers. It handles all index matching operations,
while cores manage other computations. Aventado includes
virtual memory support by reusing the cache hierarchy TLBs,
avoiding the need for dedicated memory mappings. Experi-
mental results show that, on average, Aventado outperforms
by 26.7× and 1.7× software and NDP solutions, respectively,
while incurring a negligible 0.3% area overhead over the
baseline CPU.

II. AVENTADO: REDUCING CACHE POLLUTION

Index matching operations generate transient data into the
cache, evicting useful vertex and neighbor lists before they
can be fully exploited, which reduces locality and increases
memory access overhead. Computing index matching in the



LLC prevents index matching transient data from evicting crit-
ical vertex data in upper cache levels. With its larger capacity
and lower eviction pressure, the LLC absorbs transient data,
preserving data locality. This approach also minimizes data
movement between caches, enhancing cache utilization and
overall performance for GPM workloads.

To better understand the benefits of near-LLC computing,
we evaluate1 the impact of transient data in the L1 and L2
caches. To this end, load/store instructions accessing data
generated by index matching operations bypass the L1 and
L2 caches, directly accessing the LLC. We use the largest
graph from §IV, whose memory footprint significantly exceeds
the LLC capacity, allowing to represent behaviors indicative
of non-cache resident workloads. As shown in Fig. 1.a, this
approach reduces L1 and L2 miss rates by 73% and 34%,
respectively, with only a marginal 2% increase in LLC misses.
These results demonstrate that confining index matching data
to the LLC significantly reduces cache pollution in upper cache
levels with minimal impact on LLC performance.

TC SC 4CL 5CL 6CL GM
0

20
40
60
80

100

N
or

m
. M

is
s 

Ra
te

(a)

L1D L2 LLC

TC SC 4CL 5CL 6CL GM
0.8

0.9

1.0

1.1

Sp
ee

du
p 

(x
)

(b)Fig. 1. Miss rate results for all the algorithms evaluated (§IV-A), comparing
index matching data access directly in the LLC against the baseline system.
Lower is better.

III. AVENTADO DESIGN

This section details the software-hardware components of
Aventado to support efficient NCP for index matching.

A. Aventado-ISA

To enable the software stack to control Aventado, we intro-
duce four instructions, as shown in Fig. 2. These instructions
are designed to execute intersection (aventado_intersect) and
difference (aventado_difference) operations. The core offloads
these instructions to Aventado through store instructions to
memory-mapped registers.

Instruction Functionality

aventado_intersect [addr0], len0, [addr1], len1   Intersects two input sets

aventado_difference [addr0], len0, [addr1], len1   Differences two input sets

Fig. 2. Description of Aventado instructions and their functionalities.

Fig. 3 provides an example code of extending a triangle
counting algorithm with the proposed Aventado ISA. The
baseline algorithm (Fig. 3.a) is based on the index pre-
comparison approach proposed by Dai et. al. [6] that removes
runtime symmetry breaking operations by pre-computing
them. In the Aventado-based algorithm (Fig. 3.b), for each

1§IV-A outlines our experimental methodology

neighboring vertex u1 of u0, aventado_intersection (line 10)
computes the intersection between the neighbors of u0 and u1.

a) TC Algorithm with Software Prunning b) TC Algorithm with HALIS ISA

  1: define triangleCounting(Graph G)
  2: num_triangles = 0
  3: preprocessing_prune_graph(G)
  4: for each u0 in G.nodes do
  5:     Nu0 = G.pruned_neighbors_list[u0]
  6:     for each u1 in Nu0 do
  7:       Nu1 = G.pruned_neighbors_list[u1]
  8:       Nu0,u1 = intersection(Nu0, Nu1)
  9:       num_triangles += Nu0,u1.size()
10: return num_triangles

  1: define triangleCounting(Graph G)
  2: num_triangles = 0
  3: preprocessing_prune_graph(G)
  4: for each u0 in G.nodes do
  5:     Nu0 = G.pruned_neighbors_list[u0]
  6:     for each u1 in Nu0 do
  7:       Nu1 = G.pruned_neighbors_list[u1]
  8:       Nu0,u1 = aventado_intersect(Nu0, Nu0.size(),
                                                         Nu1, Nu1.size())
  9:       num_triangles += Nu0,u1.size()
10: return num_triangles

Fig. 3. Code transformation example to utilize Aventado ISA. (a) Baseline
version of triangle counting algorithm with software pruning technique [6].
(b) Aventado-based triangle counting algorithm. Aventado instruction is high-
lighted using a green background color.

B. Aventado-Hardware

Fig. 4 provides an overview of the Aventado hardware
design. Aventado features a data channel to the LLC slice,
enabling Aventado to load and store data directly from the
LLC during execution and a translation channel to the shared
TLB (STLB) in the L2C to request virtual-to-physical trans-
lation for the memory requests done by Aventado. Aventado
is composed of three main hardware modules:
Instruction Queue. It works as the interface between the pro-
posed ISA and our NCP accelerator. When a store instruction
targets Aventado’ memory space, the store operation bypasses
the caches, and the data is stored directly in the instruction
queue 1 . Since stores are issued to memory at commit —after
both address and data have been computed —this guarantees
the arriving ordering of Aventado instructions to the Instruc-
tion queue. Additionally, Aventado’ memory space is marked
as non-cacheable to prevent reordering by the cache hierarchy.

NoC

LLC Slice

Request Buffer

L2 $ - STLB

Request Buffer

L1 I$

Core

L1 D$

Av
en

ta
do

Instruction Queue

Aventado

Translation
channel

Halis Data Channel

Instruction Stores1

Next Instruction Fetched2

LLC Data Request3

Data Control Unit

LLC Translation
Request3

PE

PE

PE
...

Execution

Data
access

co
m
p

Fig. 4. Overview of Aventado hardware integrated into the CPU cache
hierarchy.

Data Control Unit. This module is the main orchestra-
tor in Aventado. It fetches instructions from the Instruction
Queue 2 , executes the corresponding load/store operations
based on the Aventado instruction 3 , and controls the execu-
tion of the processing elements (PEs) 4 .

Instructions are fetched in-order from the Instruction Queue.
The Data Control Unit can execute up to number of PEs
concurrent instructions (eight in our evaluation). When ac-
cessing the LLC, the Data Control Unit first issues an address
translation request to the STLB to obtain the physical page
tag. It then generates dataLength/cacheLineSize requests to the



LLC, where dataLenght is given by Aventado instructions. If
data spans multiple pages, this module determines the exact
number of pages required and generates the corresponding
translation requests.
Processing Elements. Each processing element is composed
of two cache line size buffers and a comparator, and executes
the index matching operation on the data stored in the buffers.

C. Area overhead analysis

To evaluate the area impact of our design, we physically im-
plemented all Aventado hardware modules using SystemVer-
ilog and Synopsys’ ICC2 Place and Route tool [9] with a
7nm technology node. In our evaluation, we set the instruction
queue to 384 bytes (16 instructions) and 8 PEs. Aventado
adds 0.08mm2 extra per-core, resulting in a negligible area
overhead of 0.9% and 0.3% compared to the baseline core and
SoC (including a Aventado instance per core), respectively.

IV. EVALUATION

A. Experimental Methodology

We model and evaluate Aventado using an in-house, cycle-
accurate, industry-grade simulator that simultaneously runs
both functional and microarchitectural performance simulation
on a workload. The simulated system consists of 16 Neoverse-
N1-like [10] out-of-order cores, three levels of cache (1MB
LLC-slice per core) and 4 HBM2e memory channels. Each
core features an Aventado module.
Benchmarks. We evaluate Aventado using GAPBS+GraphPi
[5], [11] benchmarks, leveraging GAPBS’s efficient data struc-
tures and GraphPi’s algorithmic optimizations. We mine five
different patterns shown in Fig. 5: triangle (TC), square (SC),
four clique (4CL), five clique (5CL), and six clique (6CL),
which have been used extensively to evaluate prior work
(e.g., [1], [3], [6]). We develop a Aventado-based implemen-
tation for each evaluated pattern. Although we have evaluated
our work using these patterns, Aventado is agnostic to any
specific pattern and can be used to accelerate any arbitrary
user-defined pattern.
Datasets. We use four real-world graphs from the sparse
matrix collection [12], their main characteristics are shown
in Fig. 5. These datasets are diverse in size and connectivity,
thus providing different scenarios to evaluate our work.

Input Patterns Real-World Datasets Used for Evaluation

Triangle Square 4-Clique

5-Clique 6-Clique

Fig. 5. Input patterns and real-world datasets used in the evaluation.

Other Evaluated Approaches. Together with Aventado, we
evaluated NDMiner [3] and DIMMining [6], two NDP ac-
celerators directly integrated into DIMM modules. To obtain
their performance numbers, we run their CPU baseline code
using the same baseline CPUs and multiply speedup factors
for commonly evaluated patterns and input graphs.

B. Results

Fig. 6 compares Aventado’ performance with the baseline
software and NDP accelerators. All reported results are nor-
malized to the GAPBS+GraphPi baseline.
Aventado versus the baseline software. On average, Aven-
tado outperforms the baseline by 19.4×, 12.8×, 29.6×, 34.5×
and 37.1× for TC, SC, 4CL, 5CL, and 6CL respectively.
These performance gains are mainly due to Aventado (i)
reducing cache pollution in L1 and L2, (ii) reducing data
movement between the cache hierarchy and core, and (iii)
efficiently accelerating index matching through specialized
hardware. We make two observations: First, dense patterns
(e.g., 4CL) cause more cache pollution than sparse patterns
(e.g., SC) due to stricter symmetry breaking requirements [3],
thus, Aventado performs better for dense patterns. Second,
since larger patterns require more index matching operations,
the performance benefits of Aventado scale with the number
of vertices in the mined pattern.

Wiki-vote Ca-Astro Com-Youtube Soc-pokec GM
Graphs

100

101

102
Sp

ee
du

p 
(x

)

19
.4

12
.8

29
.6 34
.5

37
.1

TC SC 4CL 5CL 6CL

TC SC 4CL 5CL Avg
Patterns

100

101

102

14
.6 20

.1 27
.9

N
/A

NDMiner DimMining Aventado

Fig. 6. Performance comparison between Aventado, NDMiner [3], and
DimMining [6]. All results are normalized to the GAPBS+GraphPi [11] [5]
baseline.

Aventado versus state-of-the-art NDP accelerators On
average, Aventado outperforms NDminer and DIMMining
by 1.9× and 1.4×, respectively. We make two observa-
tions: First, compared to NDP, Aventado avoids cross-channel
communication, effectively exploiting data locality in GPM
algorithms. As a result, Aventado significantly outperforms
the two evaluated NDP solutions. Second, NDP solutions
implement specialized hardware, such as large reordering
tables [3] or systolic arrays [6], to accelerate index matching.
While these hardware components are optimized for specific
GPM operations, delivering significant performance benefits,
they can be bulky and remain idle for extended periods in
real HPC and data center environments that process diverse
query workloads. In contrast, Aventado offers a cost-effective
solution by seamlessly integrating into a general-purpose CPU
pipeline with negligible silicon area overhead.

V. CONCLUSIONS

We present Aventado, a novel hardware-software co-
designed near-cache accelerator that provides efficient hard-
ware support for index matching operations in GPM work-
loads. While Aventado is agnostic to any user-defined pattern,
it is also adaptable to any general-purpose architecture. Our
evaluation shows that Aventado is highly area efficient (0.5%
overhead) while providing 26.7× and 1.7× better performance
than software and hardware baselines, respectively.



REFERENCES

[1] X. Chen, T. Huang, S. Xu, T. Bourgeat, C. Chung, and A. Arvind,
“Flexminer: A pattern-aware accelerator for graph pattern mining,” in
ISCA, 2021.

[2] D. Mawhirter, S. Reinehr, C. Holmes, T. Liu, and B. Wu, “Graphzero:
Breaking symmetry for efficient graph mining,” arXiv preprint
arXiv:1911.12877, 2019.

[3] N. Talati, H. Ye, Y. Yang, L. Belayneh, K.-Y. Chen, D. Blaauw,
T. Mudge, and R. Dreslinski, “Ndminer: accelerating graph pattern
mining using near data processing,” in ISCA, 2022.

[4] A. Mukkara, N. Beckmann, M. Abeydeera, X. Ma, and D. Sanchez,
“Exploiting locality in graph analytics through hardware-accelerated
traversal scheduling,” in MICRO, 2018.

[5] T. Shi, M. Zhai, Y. Xu, and J. Zhai, “Graphpi: high performance graph
pattern matching through effective redundancy elimination,” in SC, 2020.

[6] G. Dai, Z. Zhu, T. Fu, C. Wei, B. Wang, X. Li, Y. Xie, H. Yang, and
Y. Wang, “Dimmining: pruning-efficient and parallel graph mining on
near-memory-computing,” in ISCA, 2022.

[7] B. C. Schwedock and N. Beckmann, “Leviathan: A unified system for
general-purpose near-data computing,” in MICRO, 2024.

[8] K. Zhao, K. Xue, Z. Wang, D. Schatzberg, L. Yang, A. Manousis,
J. Weiner, R. Van Riel, B. Sharma, C. Tang et al., “Contiguitas: The
pursuit of physical memory contiguity in datacenters,” in ISCA, 2023.

[9] Synopsys, https://www.synopsys.com/.
[10] A. Pellegrini, N. Stephens, M. Bruce, Y. Ishii, J. Pusdesris, A. Raja,

C. Abernathy, J. Koppanalil, T. Ringe, A. Tummala et al., “The arm
neoverse n1 platform: Building blocks for the next-gen cloud-to-edge
infrastructure soc,” IEEE Micro, vol. 40, no. 2, pp. 53–62, 2020.

[11] S. Beamer, K. Asanović, and D. Patterson, “The gap benchmark suite,”
2017. [Online]. Available: https://arxiv.org/abs/1508.03619

[12] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” TOMS, 2011.


